Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

نویسندگان

  • MV Madhava Rao
  • YanKuin Su
  • TsungSyun Huang
  • Chen-Han Yeh
  • Ming-Lung Tu
چکیده

We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV-ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 and 776 cd/m(2) at a current density of 36.16 and 31.67 mA/cm(2) are observed, respectively. Current density-voltage and brightness-voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)

In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...

متن کامل

Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode

Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) are fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50 o C. Three different LEDs, either with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods were fabricated and studied. The current-voltage characteri...

متن کامل

A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in t...

متن کامل

The effect of the interlayer design on the electroluminescence and electrical properties of n-ZnO nanorod/p-type blended polymer hybrid light emitting diodes.

Hybrid light emitting diodes (LEDs) based on n-ZnO nanorods and blended polymers were fabricated and characterized. The blended polymers consisted of a blue emitting polymer and a charge transport polymer. The effect of the interlayer design on the electrical and electroluminescent characteristics of these hybrid LEDs was investigated. We demonstrated that by adding a calcium (2) acetylacetonat...

متن کامل

Enhanced luminance in polymer composite light emitting devices

We demonstrate that mixing insulating oxide nanoparticles into electroluminescent polymer materials results in increased current densities, radiances, and power efficiencies in polymer light emitting diode devices. For low driving voltages, an order of magnitude increase in current density and light output is achieved with minimal loss in device lifetime. At 5 V, we achieve radiances of 10 000 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009